ALGÈBRE LINÉAIRE - MATH111(F) Semestre d'automne — 2024-2025

Série 9: Bases, coordonnées et représentations matricielles d'applications linéaires

Objectifs de cette série

À la fin de cette série vous devriez être capable de

- (O.1) utiliser les matrices de passage pour calculer les coordonnées d'un vecteur;
- (O.2) utiliser les représentations matricielles des applications linéaire relatives à des bases, ainsi que leur lien avec les matrices de passage pour calculer des représentations relatives à des bases différentes.

Nouveau vocabulaire dans cette série

- matrice de passage (ou de changement de base)
- représentation matricielle d'une application linéaire relative à deux bases

Noyau d'exercices

1.1 Bases

Exercice 1 (Extraction d'une base)
Soit

$$\mathsf{Sym}_2(\mathbb{R}) = \{ A \in \mathbb{M}_{2 \times 2}(\mathbb{R}) : A^{\mathsf{T}} = A \}$$

le sous-espace vectoriel des matrices symétriques dans l'espace vectoriel de matrices carrées de taille 2×2 . Montrer que la famille

$$\mathscr{F} = \left\{ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} \right\} \subseteq \mathsf{Sym}_2(\mathbb{R})$$

engendre $\mathsf{Sym}_2(\mathbb{R})$ et extraire une base, *i.e.* trouver une base $\mathscr{B} \subseteq \mathscr{F}$ de $\mathsf{Sym}_2(\mathbb{R})$.

1.2 Coordonnées de vecteurs dans \mathbb{R}^n , \mathbb{P}_n et $\mathbb{M}_{n \times m}(\mathbb{R})$

Exercice 2 (Coordonnées dans \mathbb{P}_2 , I)

On considère les deux bases (ordonnées)

$$\mathcal{B}_{can} = \{1, t, t^2\} \text{ et } \mathcal{B} = \{1 - 2t + t^2, 3 - 5t + 4t^2, 2t + 3t^2\}.$$

de l'espace vectoriel \mathbb{P}_2 .

- (a) Déterminer la matrice $P_{\mathcal{B}_{can}\leftarrow\mathcal{B}}$ de changement de base de la base \mathcal{B} vers la base canonique \mathcal{B}_{can} .
- (b) Déterminer le vecteur $[p]_{\mathcal{B}} \in \mathbb{R}^3$ de coordonnées du polynôme $-1 + 2t \in \mathbb{P}_2$ dans la base \mathcal{B} .

Exercice 3 (Coordonnées dans \mathbb{R}^3)

On considère la base (ordonnée)

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ -7 \\ 0 \end{pmatrix} \right\}$$

et soit $\mathbf{x} \in \mathbb{R}^2$ l'unique vecteur tel que

$$[\mathbf{x}]_{\mathscr{B}} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}.$$

- (a) Calculer le vecteur \mathbf{x} (qui coïncide avec $[\mathbf{x}]_{\mathcal{B}}$, où \mathcal{B}_{can} est la base canonique de \mathbb{R}^3 .)
- (b) Calculer $[y]_{\mathscr{B}}$ pour

$$\mathbf{y} = \begin{pmatrix} 10 \\ -9 \\ 1 \end{pmatrix}.$$

Exercice 4 (Coordonnées dans \mathbb{P}_2 , II)

On considère les deux bases (ordonnées)

$$\mathcal{B}_{can} = \{1, t, t^2\} \text{ et } \mathcal{B} = \{1 + t^2, 1 - 3t^2, 1 + t - 3t^2\}.$$

de l'espace vectoriel \mathbb{P}_2 .

(a) Soit $p \in \mathbb{P}_2$ l'unique polynôme tel que

$$[p]_{\mathscr{B}} = \begin{pmatrix} -1\\1\\2 \end{pmatrix}.$$

Calculer $[p]_{\mathscr{B}_{can}}$

- (i) en développant $[p]_{\mathscr{B}}$ dans \mathbb{P}_2 ;
- (ii) en utilisant l'identité $[p]_{\mathcal{B}_{can}} = P_{\mathcal{B}_{can} \leftarrow \mathcal{B}}[p]_{\mathcal{B}}$;
- (iii) en résolvant l'équation matricielle $P_{\mathcal{B}\leftarrow\mathcal{B}_{\operatorname{can}}}[p]_{\mathcal{B}_{\operatorname{can}}}=[p]_{\mathcal{B}}$.
- (b) Soit $q = -2 + 5t 2t^2 \in \mathbb{P}_2$. Calculer $[q]_{\mathscr{B}}$
 - (i) en développant $[q]_{\mathscr{B}}$ dans \mathbb{P}_2 ;
 - (ii) en utilisant l'identité $[q]_{\mathscr{B}}=P_{\mathscr{B}\leftarrow\mathscr{B}_{\operatorname{can}}}[q]_{\mathscr{B}_{\operatorname{can}}}$;
 - (iii) en résolvant l'équation matricielle $P_{\mathscr{B}_{can} \leftarrow \mathscr{B}}[q]_{\mathscr{B}} = [q]_{\mathscr{B}_{can}}$.

1.3 Matrices d'applications linéaires

Exercice 5 (Représentation matricielle d'une application linéaire I)

Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire donnée par

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_3 \\ 2x_2 + x_3 \\ x_1 + x_2 \end{pmatrix}$$

pour tous $x_1, x_2, x_3 \in \mathbb{R}$. Soient \mathscr{B}_{can} la base canonique de \mathbb{R}^3 et \mathscr{B} une base de \mathbb{R}^3 donnée par

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- (a) Donner la matrice M qui représente T par rapport aux bases \mathcal{B}_{can} dans l'espace de départ et \mathcal{B} dans l'espace d'arrivée.
- (b) Même question pour les bases \mathcal{B} dans l'espace de départ et \mathcal{B}_{can} dans l'espace d'arrivée.
- (c) Même question pour la base B dans l'espace de départ et d'arrivée.

Exercice 6 (Représentation matricielle d'une application linéaire II)

On considère la transformation $T: \mathbb{P}_3 \to \mathbb{P}_2$ définie par

$$T(a+bt+ct^2+dt^3) = (a+b+c+d)+(a+b)t+(c+d)t^2$$

pour tous $a, b, c, d \in \mathbb{R}$.

- (a) Vérifier que T est linéaire.
- (b) Trouver la dimension et une base de Img(T).
- (c) Vérifier que le polynôme $7 + 5t + 2t^2$ est bien dans l'image de T et donner ses coordonnées dans la base trouvée dans l'item précédent.
- (d) Trouver la dimension et une base de Ker(T).
- (e) Vérifier que le polynôme $2-2t-5t^2+5t^3$ est bien dans le noyau de T et donner ses coordonnées dans la base trouvée dans l'item précédent.

Pour compléter la pratique

2.1 Bases

Exercice 7 (QCM sur indépendance linéaire et bases)

Résoudre les QCM dans les items suivants, où chaque QCM n'admet qu'une seule réponse correcte.

(a) La famille

$$\mathscr{F} = \{t^2 + t + 1, t^2 + 2t + a, t^3 + b, t + c\} \subseteq \mathbb{P}_4$$

	forme une base de \mathbb{P}_4 pour certaines valeurs de $a,b,c\in\mathbb{R}$;	
	forme une base de $\mathbb{P}_3 \subseteq \mathbb{P}_4$ pour certaines valeurs de $a, b, c \in \mathbb{R}$;	
	est une famille liée de \mathbb{P}_4 pour toutes les valeurs de $a,b,c\in\mathbb{R}$;	
	est une famille liée de \mathbb{P}_4 pour toutes les valeurs de $a,b,c\in\mathbb{R}$ avec $a-c-1\neq 0$.	
(b) La fami	lle	
	((1 0) (0 0) (1 1) (0 3))	
	$\mathscr{F} = \left\{ \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 3 \\ 1 & b \end{pmatrix} \right\} \subseteq \mathbb{M}_{2 \times 2}(\mathbb{R})$	
est libre		
	pour toutes les valeurs de $a, b \in \mathbb{R}$;	
	si $a \in \mathbb{R}$ est non nul et pour toute valeur de $b \in \mathbb{R}$;	
	pour toutes les valeurs de $a, b \in \mathbb{R}$ avec $a \neq 0$ et $b \neq 3$;	
	pour $b = 3$ et toute valeur de $a \in \mathbb{R}$ avec $a \neq 0$.	
Exercice 8 (QCM sur bases et coordonnées) Résoudre les QCM dans les items suivants, où chaque QCM n'admet qu'une seule réponse correcte. (a) Soit		
	$A = \begin{pmatrix} -1 & 3 \\ -2 & 6 \\ -4 & 12 \\ 3 & -9 \end{pmatrix},$	
alors		
	$Ker(A)$ est un sous-espace vectoriel de \mathbb{R}^4 de dimension 0;	
	$Ker(A)$ est un sous-espace vectoriel de \mathbb{R}^2 de dimension 0;	
	$Ker(A)$ est un sous-espace vectoriel de \mathbb{R}^4 de dimension 1;	
	$Ker(A)$ est un sous-espace vectoriel de \mathbb{R}^2 de dimension 1.	
(b) La famille		
	$\mathscr{F} = \{\underbrace{t - t^2}_p, \underbrace{1 + t^2}_q\} \subseteq \mathbb{P}_2$	
	est une famille libre mais non génératrice de \mathbb{P}_2 ;	
	est une base de \mathbb{P}_2 ;	
	est de cardinalité 1;	

satisfait que $(1+t)q - (1-t)p \in \text{Vect } \mathscr{F}$.

(c) Pour

$$W = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_6 \end{pmatrix} \in \mathbb{R}^6 : x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 0 \right\}$$

et les vecteurs

$$\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \text{et } \mathbf{c} = \begin{pmatrix} 1 \\ 2 \\ -3 \\ -1 \\ -2 \\ 3 \end{pmatrix}$$

dans W, alors

on peut compléter $\{a,b\}$ en une base de W formée de 5 vecteurs ;
on peut compléter $\{a,b\}$ en une base de W formée de 6 vecteurs ;
on peut compléter $\{\mathbf{a},\mathbf{c}\}$ en une base de W formée de 5 vecteurs ;
on peut compléter $\{\mathbf{a},\mathbf{c}\}$ en une base de W formée de 6 vecteurs.

(d) Étant donné un espace vectoriel V et une partie $\mathscr{F} \subseteq V$ de cardinalité k, alors

si \mathscr{F} est libre, alors $\dim(V) = k$;
si \mathscr{F} est libre, alors $\dim(V) \geq k$;
si \mathscr{F} est une famille génératrice de V , alors $\dim(V) = k$;
si \mathscr{F} est une famille génératrice de V , alors dim $(V) \ge k$.

2.2 Matrices d'applications linéaires

Exercice 9 (Représentation matricielle d'une application linéaire III)

Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire donnée par

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + x_4 \end{pmatrix}$$

pour tous $x_1, x_2, x_3, x_4 \in \mathbb{R}$, et soit

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix} \right\}$$

une base (ordonnée) de \mathbb{R}^4 . Donner la matrice de T dans la base \mathscr{B} .